홈 > 부모님 > 부모님 > 소설,일반 > 컴퓨터,모바일
쉽고 빠르게 익히는 실전 LLM  이미지

쉽고 빠르게 익히는 실전 LLM
ChatGPT 활용부터 LLM 파인튜닝, 임베딩, 고급 프롬프트 엔지니어링까지 I LLM FAQ, AI/ML 용어 해설집 수록
한빛미디어 | 부모님 | 2024.02.01
  • 정가
  • 28,000원
  • 판매가
  • 25,200원 (10% 할인)
  • S포인트
  • 1,400P (5% 적립)
  • 상세정보
  • 18.3x23.5 | 0.593Kg | 312p
  • ISBN
  • 9791169211932
  • 배송비
  • 2만원 이상 구매시 무료배송 (제주 5만원 이상) ?
    배송비 안내
    전집 구매시
    주문하신 상품의 전집이 있는 경우 무료배송입니다.(전집 구매 또는 전집 + 단품 구매 시)
    단품(단행본, DVD, 음반, 완구) 구매시
    2만원 이상 구매시 무료배송이며, 2만원 미만일 경우 2,000원의 배송비가 부과됩니다.(제주도는 5만원이상 무료배송)
    무료배송으로 표기된 상품
    무료배송으로 표기된 상품일 경우 구매금액과 무관하게 무료 배송입니다.(도서, 산간지역 및 제주도는 제외)
  • 출고일
  • 1~2일 안에 출고됩니다. (영업일 기준) ?
    출고일 안내
    출고일 이란
    출고일은 주문하신 상품이 밀크북 물류센터 또는 해당업체에서 포장을 완료하고 고객님의 배송지로 발송하는 날짜이며, 재고의 여유가 충분할 경우 단축될 수 있습니다.
    당일 출고 기준
    재고가 있는 상품에 한하여 평일 오후3시 이전에 결제를 완료하시면 당일에 출고됩니다.
    재고 미보유 상품
    영업일 기준 업체배송상품은 통상 2일, 당사 물류센터에서 발송되는 경우 통상 3일 이내 출고되며, 재고확보가 일찍되면 출고일자가 단축될 수 있습니다.
    배송일시
    택배사 영업일 기준으로 출고일로부터 1~2일 이내 받으실 수 있으며, 도서, 산간, 제주도의 경우 지역에 따라 좀 더 길어질 수 있습니다.
    묶음 배송 상품(부피가 작은 단품류)의 출고일
    상품페이지에 묶음배송으로 표기된 상품은 당사 물류센터에서 출고가 되며, 이 때 출고일이 가장 늦은 상품을 기준으로 함께 출고됩니다.
  • 주문수량
  • ★★★★★
  • 0/5
리뷰 0
리뷰쓰기

구매문의 및 도서상담은 031-944-3966(매장)으로 문의해주세요.
매장전집은 전화 혹은 매장방문만 구입 가능합니다.

  • 도서 소개
  • 출판사 리뷰
  • 작가 소개
  • 목차
  • 회원 리뷰

  도서 소개

LLM 개발 단계별 지침, 모범 사례, 실제 사례 연구, 실습 예제 등 LLM이 생소했던 사람도 당장 개발을 시작할 수 있을 만큼 LLM에 대한 전반적인 지식을 쉽고 친절하게 설명한다. 또한, LLM 개발에 더 깊이 들어가 파인튜닝, 오픈 소스와 클로즈드 소스 LLM의 비교 및 활용법, 데이터 형식 및 파라미터 설정법, 임베딩, 성능 최적화, 고급 프롬프트 엔지니어링까지 다뤄 LLM을 실제로 현업에서 활용하고 있는 실무자에게도 통찰력을 제공한다.

  출판사 리뷰

LLM 입문자도 당장 시작할 수 있게 해 주는 단계별 가이드
* LLM FAQ, AI/ML 용어 해설집, LLM 애플리케이션 개발 고려사항 Tip 수록


이 책은 LLM 개발 단계별 지침, 모범 사례, 실제 사례 연구, 실습 예제 등 LLM이 생소했던 사람도 당장 개발을 시작할 수 있을 만큼 LLM에 대한 전반적인 지식을 쉽고 친절하게 설명합니다. 또한, LLM 개발에 더 깊이 들어가 파인튜닝, 오픈 소스와 클로즈드 소스 LLM의 비교 및 활용법, 데이터 형식 및 파라미터 설정법, 임베딩, 성능 최적화, 고급 프롬프트 엔지니어링까지 다뤄 LLM을 실제로 현업에서 활용하고 있는 실무자에게도 통찰력을 제공합니다. LLM 입문서이자, 실무 가이드인 이 도서를 통해 다가오는 LLM 시대를 더 확실히 대비하세요!

LLM이 생소한 입문자이든, 숙련된 개발자이든, 모두가 만족할 맞춤형 LLM 가이드
ChatGPT와 같은 최신 LLM은 놀랍고도 편리한 기술을 제공해 주지만, 거대한 크기와 많은 복잡성 때문에 여전히 실무자가 실제로 자신의 업무에 적용하기 어려워합니다. 이 책은 이러한 어려움을 해결하기 위해 LLM의 복잡성을 최소화하고, 프롬프트 엔지니어링 기법부터 강화 학습까지 여러 분야의 쉽지 않은 내용들을 적당한 깊이와 난이도로 설명합니다. LLM 서비스를 구현하는 개발자이든, 새롭게 공부하는 학생이든, 심지어 서비스를 기획하는 프로덕트 매니저까지도 자신의 수준에 맞는 LLM 개념과 활용법을 알차게 배울 수 있습니다. 이 책을 통해 LLM의 전반적인 지식을 빠르고 쉽게 익혀 자신의 업무에 LLM을 적용해 보시길 바랍니다.

주요 내용
ㅇ 사전 훈련, 파인튜닝, 어텐션, 토큰화 등 LLM의 주요 개념
ㅇ API와 파이썬을 활용한 LLM 파인튜닝 및 맞춤화
ㅇ 의미 기반 검색 시스템을 구축하여 LLM 검색 기능 최적화
ㅇ 퓨샷 프롬프트와 같은 고급 프롬프트 엔지니어링
? LLM 임베딩, 멀티모달 트랜스포머 구축, RLHF/RLAIF를 활용한 LLM 정렬




  작가 소개

지은이 : 시난 오즈데미르
현재 Shiba Technologies의 창립자이자 CTO입니다. 존스 홉킨스 대학교의 데이터 과학 강사였으며 데이터 과학 및 머신러닝에 관한 여러 교과서를 집필했습니다. 또한 RPA 기능을 갖춘 엔터프라이즈급 대화형 AI 플랫폼인 Kylie.ai의 창립자이기도 합니다.

  목차

Part 1 LLM 소개

Chapter 1 LLM
_1.1 LLM이란?
__1.1.1 LLM 정의
__1.1.2 LLM 주요 특징
__1.1.3 LLM 작동 원리
_1.2 현재 많이 사용되는 LLM
__1.2.1 BERT
__1.2.2 GPT-4와 ChatGPT
__1.2.3 T5
_1.3 도메인 특화 LLM
_1.4 LLM을 이용한 애플리케이션
__1.4.1 전통적인 자연어 처리(NLP) 작업
__1.4.2 자유로운 텍스트 생성
__1.4.3 정보 검색/신경망 의미 기반 검색
__1.4.4 챗봇
_1.5 마치며

Chapter 2 LLM을 이용한 의미 기반 검색
_2.1 들어가는 글
_2.2 작업
__2.2.1 비대칭적 의미 기반 검색
_2.3 솔루션 개요
_2.4 구성 요소
__2.4.1 텍스트 임베더
__2.4.2 문서 청킹
__2.4.3 벡터 데이터베이스
__2.4.4 파인콘
__2.4.5 오픈 소스 대안
__2.4.6 검색 결과 재순위화
__2.4.7 API
_2.5 통합
__2.5.1 성능
_2.6 클로즈드 소스 구성 요소의 비용
_2.7 마치며

Chapter 3 프롬프트 엔지니어링의 첫 번째 단계
_3.1 들어가는 글
_3.2 프롬프트 엔지니어링
__3.2.1 언어 모델에서 정렬
__3.2.2 직접 요청하기
__3.2.3 퓨샷 학습
__3.2.4 출력 구조화
__3.2.5 페르소나 지정하기
_3.3 여러 모델과 프롬프트 작업하기
__3.3.1 ChatGPT
__3.3.2 Cohere
__3.3.3 오픈 소스 프롬프트 엔지니어링
_3.4 ChatGPT와 Q/A 챗봇 만들기
_3.5 마치며

Part 2 LLM 활용법

Chapter 4 맞춤형 파인튜닝으로 LLM을 최적화하기
_4.1 들어가는 글
_4.2 파인튜닝과 전이학습: 기초 안내서
__4.2.1 파인튜닝 과정
__4.2.2 파운데이션 모델로 사전 훈련된 클로즈드 소스 모델 사용하기
_4.3 OpenAI 파인튜닝 API 살펴보기
__4.3.1 GPT-3 파인튜닝 API
__4.3.2 사례 연구: Amazon 리뷰 감정 분류
__4.3.3 데이터에 대한 지침 및 모범 사례
_4.4 OpenAI CLI로 맞춤형 예제 준비하기
_4.5 OpenAI CLI 설정하기
__4.5.1 하이퍼파라미터 선택과 최적화
_4.6 첫 번째 파인튜닝 LLM
__4.6.1 정량적 지표로 파인튜닝 모델 평가하기
__4.6.2 정성적 평가 기술
__4.6.3 파인튜닝된 GPT-3 모델을 애플리케이션에 통합하기
_4.7 사례 연구 2: Amazon 리뷰 카테고리 분류
_4.8 마치며

Chapter 5 고급 프롬프트 엔지니어링
_5.1 들어가는 글
_5.2 프롬프트 인젝션 공격
_5.3 입력/출력 유효성 검사
__5.3.1 예제: NLI 이용해서 유효성 검사 파이프라인 만들기
_5.4 배치 프롬프팅
_5.5 프롬프트 체이닝
__5.5.1 프롬프트 인젝션을 방어하기 위한 체이닝
__5.5.2 프롬프트 스터핑을 막기 위한 체이닝
__5.5.3 예제: 멀티모달 LLM을 안전하게 사용하기 위한 체이닝
_5.6 연쇄적 사고 프롬프트
__5.6.1 예시: 기초 연산
_5.7 퓨샷 학습 다시 보기
__5.7.1 예제: LLM을 이용한 초등학교 수학
_5.8 테스트와 반복적 프롬프트 개발
_5.9 마치며

Chapter 6 임베딩과 모델 아키텍처 맞춤화
_6.1 들어가는 글
_6.2 사례 연구: 추천 시스템 만들기
__6.2.1 문제와 데이터 설정하기
__6.2.2 추천의 문제 정의하기
__6.2.3 추천 시스템의 전체 개요
__6.2.4 항목 비교를 위한 맞춤형 설명 필드 생성
__6.2.5 파운데이션 임베더로 기준선 설정
__6.2.6 파인튜닝 데이터 준비
__6.2.7 문장 트랜스포머 라이브러리로 오픈 소스 임베더 파인튜닝하기
__6.2.8 결과 요약
_6.3 마치며

Part 3 고급 LLM 사용법

Chapter 7 파운데이션 모델을 넘어서
_7.1 들어가는 글
_7.2 사례연구: VQA
__7.2.1 모델 소개: ViT, GPT-2 및 DistillBERT
__7.2.2 은닉 상태 투영과 융합
__7.2.3 크로스-어텐션: 이것은 무엇이며 왜 중요한가요?
__7.2.4 맞춤형 멀티모달 모델
__7.2.5 데이터: Visual QA
__7.2.6 VQA 훈련 과정
__7.2.7 결과 요약
_7.3 사례 연구: 피드백 기반 강화 학습
__7.3.1 모델: FLAN-T5
__7.3.2 보상 모델: 감정과 문법 정확도
__7.3.3 트랜스포머 강화 학습
__7.3.4 RLF 훈련 과정
__7.3.5 결과 요약
_7.4 마치며

Chapter 8 고급 오픈 소스 LLM 파인튜닝
_8.1 들어가는 글
_8.2 예시: BERT를 이용한 애니메이션 장르 다중 레이블 분류
__8.2.1 다중 레이블 장르 예측을 위한 성능 측정 지표로 자카드 점수 사용하기
__8.2.2 단순 파인튜닝 과정
__8.2.3 오픈 소스 LLM 파인튜닝을 위한 일반적인 팁
__8.2.4 결과 요약
_8.3 예시: GPT-2를 이용한 LaTeX 생성
__8.3.1 오픈 소스 모델을 위한 프롬프트 엔지니어링
__8.3.2 결과 요약
_8.4 시난의 현명하면서도 매력적인 답변 생성기: SAWYER
__1단계: 지시사항 파인튜닝
__2단계: 보상 모델 훈련
__3단계: (예상하는) 사용자 피드백 기반 강화 학습
__결과 요약
_8.5 끊임없이 변화하는 파인튜닝의 세계
_8.6 마치며

Chapter 9 LLM을 프로덕션 환경에서 사용하기
_9.1 들어가는 글
_9.2 클로즈드 소스 LLM을 프로덕션 환경에 배포하기
__9.2.1 비용 예측
__9.2.2 API 키 관리
_9.3 프로덕션 환경에 오픈 소스 LLM 배포하기
__9.3.1 추론을 위한 모델 준비
__9.3.2 상호 운용성
__9.3.3 양자화
__9.3.4 가지치기
__9.3.5 지식 증류
__9.3.6 LLM 사용에 대한 비용 예측
__9.3.7 Hugging Face에 올리기
_9.4 마치며

Part 4 부록
APPENDIX A LLM 자주 묻는 질문(FAQ)
APPENDIX B LLM 용어 해설
APPENDIX C LLM 애플리케이션 개발 고려사항

  회원리뷰

리뷰쓰기