홈 > 부모님 > 부모님 > 소설,일반 > 컴퓨터,모바일
구글 BERT의 정석  이미지

구글 BERT의 정석
인공지능, 자연어 처리를 위한 BERT의 모든 것
한빛미디어 | 부모님 | 2021.11.03
  • 정가
  • 34,000원
  • 판매가
  • 30,600원 (10% 할인)
  • S포인트
  • 1,700P (5% 적립)
  • 상세정보
  • 18.3x23.5 | 0.699Kg | 368p
  • ISBN
  • 9791162244852
  • 배송비
  • 2만원 이상 구매시 무료배송 (제주 5만원 이상) ?
    배송비 안내
    전집 구매시
    주문하신 상품의 전집이 있는 경우 무료배송입니다.(전집 구매 또는 전집 + 단품 구매 시)
    단품(단행본, DVD, 음반, 완구) 구매시
    2만원 이상 구매시 무료배송이며, 2만원 미만일 경우 2,000원의 배송비가 부과됩니다.(제주도는 5만원이상 무료배송)
    무료배송으로 표기된 상품
    무료배송으로 표기된 상품일 경우 구매금액과 무관하게 무료 배송입니다.(도서, 산간지역 및 제주도는 제외)
  • 출고일
  • 1~2일 안에 출고됩니다. (영업일 기준) ?
    출고일 안내
    출고일 이란
    출고일은 주문하신 상품이 밀크북 물류센터 또는 해당업체에서 포장을 완료하고 고객님의 배송지로 발송하는 날짜이며, 재고의 여유가 충분할 경우 단축될 수 있습니다.
    당일 출고 기준
    재고가 있는 상품에 한하여 평일 오후3시 이전에 결제를 완료하시면 당일에 출고됩니다.
    재고 미보유 상품
    영업일 기준 업체배송상품은 통상 2일, 당사 물류센터에서 발송되는 경우 통상 3일 이내 출고되며, 재고확보가 일찍되면 출고일자가 단축될 수 있습니다.
    배송일시
    택배사 영업일 기준으로 출고일로부터 1~2일 이내 받으실 수 있으며, 도서, 산간, 제주도의 경우 지역에 따라 좀 더 길어질 수 있습니다.
    묶음 배송 상품(부피가 작은 단품류)의 출고일
    상품페이지에 묶음배송으로 표기된 상품은 당사 물류센터에서 출고가 되며, 이 때 출고일이 가장 늦은 상품을 기준으로 함께 출고됩니다.
  • 주문수량
  • ★★★★★
  • 0/5
리뷰 0
리뷰쓰기
  • 도서 소개
  • 출판사 리뷰
  • 작가 소개
  • 목차
  • 회원 리뷰

  도서 소개

인간보다 언어를 더 잘 이해하고 구현하는 고성능 AI 언어 모델 BERT. 이 책은 자연어 응용 분야에서 상당한 성능 향상을 이뤄 주목받고 있는 BERT 모델을 기초부터 다양한 변형 모델, 응용 사례까지 한 권으로 담은 실무 지침서다.

가장 먼저 사전 학습을 개선하여 성능을 향상하는 ALBERT, BART, ELECTRA, SpanBERT, RoBERTa, VideoBERT와 같은 BERT 변형 모델을 간단한 언어로 잘 풀어서 친절하게 설명한다. 다음으로 BioBERT 및 ClinicalBERT와 같은 특정 도메인에 해당하는 BERT 모델을 배우고 BERT의 재미있는 변형 모델인 VideoBERT도 살펴본다. 특별히, 본문 맨 뒤에는 한국어에 잘 동작하는 한국어 언어 모델 KoBERT, KoGPT2, KoBART를 추가 집필하여 붙였다. 이 책을 따라 모든 학습을 마치고 나면 BERT와 변형 모델을 활용해 여러 자연어 처리 태스크를 수월하게 처리할 수 있을 것이다.

  출판사 리뷰

인간의 인지 능력을 능가하는 구글 AI 모델, BERT

자연어 처리에서 가장 화두가 되는 BERT는 2019년 11월에 구글이 공개한 AI 언어 모델입니다. 일부 성능 평가에서 인간을 능가하며 자연어 처리 발전에 큰 영향을 끼쳤습니다. 많은 사람이 자연어 처리 분야만큼은 AI를 적용하는 건 쉽지 않다고 생각했습니다. 하지만 BERT의 등장으로 그 가능성을 입증했으며, 자연어 처리 기술의 폭발적인 발전을 이루어냈습니다. 언어를 활용한 서비스를 개발하는 기관에서는 이미 BERT를 사용하고 있습니다. 문장 내 어절을 한 글자씩 나눈 다음 앞뒤로 자주 만나는 글자를 한 단어로 인식하는 방식으로 언어 처리 11개 분야에서 많은 성능 향상을 이뤄 주목을 받고 있습니다.

이 책에서는 자연어 처리에서 핵심 트렌드로 자리 잡은 BERT의 기본 개념부터 다양한 변형 모델과 응용 사례까지 모두 소개합니다. 전반부에서는 BERT의 전체 과정을 이해하는 데 기본이 되는 BERT와 트랜스포머를 다룹니다. 이어서 트랜스포머의 인코더와 디코더가 어떻게 작동하는지도 배우게 됩니다. 후반부에서는 BERT 외에 ALBERT, BART, ELECTRA, SpanBERT, RoBERTa, VideoBERT 등 다양한 BERT의 파생 모델을 소개합니다. 마지막으로 역자가 한국어의 불규칙한 언어 특성을 극복한 한국어 모델인 KoBERT, KoGPT2, KoBART에 대한 내용을 추가했습니다.

이 책 한 권이면 복잡한 BERT 개념을 완벽하게 이해하고 적은 양의 데이터로 인공지능을 구현할 수 있게 됩니다. 자연어 처리 업무를 단순하게 만들고 싶거나 인공지능, 딥러닝의 최신 트렌드가 무엇인지 궁금한 모든 이에게 훌륭한 안내서가 되어줄 것입니다.

주요 내용

트랜스포머 모델
BERT의 작동 원리
마스크 언어 모델과 다음 문장 예측 태스크를 활용한 사전 학습
BERT를 활용해 상황에 맞는 단어 및 문장 임베딩 생성
다운스트림 태스크를 위한 BERT 파인 튜닝
ALBERT, RoBERTa, ELECTRA, SpanBERT 모델
지식 증류 기반 BERT 모델
XLM 및 XLM-R 언어 모델
sentence-BERT. VideoBERT, BART 모델
KoBERT, KoGPT2, KoBART 모델




  작가 소개

지은이 : 수다르산 라비찬디란
데이터 과학자이자 연구원이자 저명한 저술가. 안나 대학교에서 정보 기술 학사 학위를 취득했다.연구 분야는 자연어 처리 및 컴퓨터 비전, 딥러닝 및 강화학습의 실제 구현에 중점을 두고 있다. 오픈 소스 기여자이며 스택 오버플로 질문에 답하는 것을 좋아한다. 또한 베스트셀러 『Hands-OnReinforcement Learning with Python』(Manning, 2018)을 집필했다.

  목차

[PART I BERT 시작하기]

CHAPTER 1 트랜스포머 입문
1.1 트랜스포머 소개
1.2 트랜스포머의 인코더 이해하기
1.3 트랜스포머 디코더 이해하기
1.4 인코더와 디코더 결합
1.5 트랜스포머 학습
1.6 마치며
1.7 연습 문제
1.8 보충 자료

CHAPTER 2 BERT 이해하기
2.1 BERT 기본 개념
2.2 BERT의 동작 방식
2.3 BERT의 구조
2.4 BERT 사전 학습
2.5 하위 단위 토큰화 알고리즘
2.6 마치며
2.7 연습 문제
2.8 보충 자료

CHAPTER 3 BERT 활용하기
3.1 사전 학습된 BERT 모델 탐색
3.2 사전 학습된 BERT에서 임베딩을 추출하는 방법
3.3 BERT의 모든 인코더 레이어에서 임베딩을 추출하는 방법
3.4 다운스트림 태스크를 위한 BERT 파인 튜닝 방법
3.5 마치며
3.6 연습 문제
3.7 보충 자료

[PART II BERT 파생 모델]


CHAPTER 4 B ERT의 파생 모델 I: ALBERT, RoBERTa, ELECTRA, SpanBERT
4.1 ALBERT
4.2 ALBERT에서 임베딩 추출
4.3 RoBERTa
4.4 ELECTRA 이해하기
4.5 SpanBERT로 스팬 예측
4.6 마치며
4.7 연습 문제
4.8 보충 자료

CHAPTER 5 BERT 파생 모델 II: 지식 증류 기반
5.1 지식 증류 소개
5.2 DistilBERT: BERT의 지식 증류 버전
5.3 TinyBERT 소개
5.4 BERT에서 신경망으로 지식 전달
5.5 마치며
5.6 연습 문제
5.7 보충 자료

[PART III BERT 적용하기]


CHAPTER 6 텍스트 요약을 위한 BERTSUM 탐색
6.1 텍스트 요약
6.2 텍스트 요약에 맞춘 BERT 파인 튜닝
6.3 ROUGE 평가 지표 이해하기
6.4 BERTSUM 모델의 성능
6.5 BERTSUM 모델 학습
6.6 마치며
6.7 연습 문제
6.8 보충 자료

CHAPTER 7 다른 언어에 BERT 적용하기
7.1 M-BERT 이해하기
7.2 M-BERT는 다국어 표현이 어떻게 가능한가?
7.3 XLM
7.4 XLM-R 이해하기
7.5 언어별 BERT
7.6 마치며
7.7 연습 문제
7.8 보충 자료

CHAPTER 8 sentence-BERT 및 domain-BERT 살펴보기
8.1 sentence-BERT로 문장 표현 배우기
8.2 sentence-transformers 라이브러리 탐색
8.3 지식 증류를 이용한 다국어 임베딩 학습
8.4 domain-BERT
8.5 마치며
8.6 연습 문제
8.7 보충 자료

CHAPTER 9 VideoBERT, BART
9.1 VideoBERT로 언어 및 비디오 표현 학습
9.2 BART 이해하기
9.3 BERT 라이브러리 탐색
9.4 마치며
9.5 연습 문제
9.6 보충 자료

CHAPTER 10 한국어 언어 모델: KoBERT, KoGPT2, KoBART
10.1 KoBERT
10.2 KoGPT2
10.3 KoBART

  회원리뷰

리뷰쓰기